Tutorial 2

CS335A

Packet Switching vs Circuit Switching Delays, Throughput, Loss

Circuit Switching

end-to-end resources allocated to, reserved for "call" between source and destination

- in diagram, each link has four circuits.
 - call gets 2nd circuit in top link and 1st circuit in right link.
- dedicated resources: no sharing
 - circuit-like (guaranteed) performance
- circuit segment idle if not used by call (no sharing)
- commonly used in traditional telephone networks

^{*} Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive

Packet Switching

host sending function:

- takes application message
- breaks into smaller chunks,
 known as packets, of length L bits
- network forwards packets from one router to the next, across links on path from source to destination

Packet switching versus Circuit switching

Packet Switching

- resources are reserved on demand
- great for "bursty" data
 - sometimes has data to send, but at other times not
- resource sharing
- simpler, no call setup
- excessive congestion possible:
 - packet delay and loss due to buffer overflow
 - protocols needed for reliable data transfer, congestion control

Circuit Switching

- resources are allocated end-toend
 - reserved even during idle times
- no sharing
- call setup to allocate resources
- bandwidth guarantees

Host: sends packets of data

- bandwidth: the maximum rate at which data can be transmitted over a network connection (R)
 - how fast data can be placed into the physical link i.e. the cable
 - link transmission rate, link capacity, link bandwidth
 - measured in bits per second (bps)
 - not bytes be careful in assignment

Packet-switching: store-and-forward

packet transmission delay: takes L/R seconds to transmit (push out) L-bit packet into link at R bps

packet time needed to transmission = transmit
$$L$$
-bit = $\frac{L}{R}$ (bits/sec)

 store and forward: entire packet must arrive at router before it can be transmitted on next link

Packet-switching: queueing

Queueing occurs when work arrives faster than it can be serviced:

Packet-switching: queueing

Packet queuing and loss: if arrival rate (in bps) to link exceeds transmission rate (bps) of link for some period of time:

- packets will queue, waiting to be transmitted on output link
- packets can be dropped (lost) if memory (buffer) in router fills up

Packet delay: four sources

$$d_{\text{nodal}} = d_{\text{proc}} + d_{\text{queue}} + d_{\text{trans}} + d_{\text{prop}}$$

d_{proc} : nodal processing

- check bit errors
- determine output link
- typically < microsecs</p>

d_{queue}: queueing delay

- time waiting at output link for transmission
- depends on congestion level of router

Packet delay: four sources

$$d_{\text{nodal}} = d_{\text{proc}} + d_{\text{queue}} + d_{\text{trans}} + d_{\text{prop}}$$

d_{trans} : transmission delay:

- L: packet length (bits)
- R: link transmission rate (bps)

$$\frac{\mathbf{d}_{trans} = L/R}{\mathbf{d}_{trans}} \text{ and } \frac{\mathbf{d}_{prop}}{very \text{ different}}$$

d_{prop} : propagation delay:

- *d*: length of physical link
- s: propagation speed (~2x10⁸ m/sec)

Transmission vs Propagation Delay

Transmission Delay

- time to push all bits of a packet into the link (from router)
- depends on packet size and link bandwidth
- $d_{trans} = L/R$

Propagation Delay

- time for the signal to travel across
 the medium (cable, air etc.)
- depends on distance and signal speed
- $d_{prop} = d/s$

Key Difference

- transmission = how fast data is put on the wire
- propagation = how fast data moves through the wire

The end-to-end delay is the *sum of all the nodal delays*

$$d_{end-to-end} = \sum_{i=1}^{N} d_{nodal,i} = \sum_{i=1}^{N} (d_{proc,i} + d_{queue,i} + d_{trans,i} + d_{prop,i})$$

Where *N* = *number of routers* + *the source host*

- Packet size: L = 1000 bits
- **Link 1:** $R_1 = 1$ Mbps, $d_1 = 100$ km
- **Link 2:** $R_2 = 500 \text{ kbps}$, $d_2 = 200 \text{ km}$
- **Link 3:** $R_3 = 2$ Mbps, $d_3 = 50$ km
- Propagation speed: s = 2 * 10⁸ m/s
- Processing delay at each router: 1 ms
- Queuing delay at each router: 2 ms

Problem:

Host **A** sends a packet of **1,000 bits** to host **B**. Find the end-to-end delay.

Propagation speed: s = 2 * 10⁸ m/s

Processing delay at each router = 1 ms

Queuing delay at each router = 2 ms

For node 1:

$$d_{nodal,1} = d_{proc,1} + d_{queue,1} + d_{trans,1} + d_{prop,1} = 0 + 0 + \frac{L}{R_1} + \frac{d_1}{s}$$
$$= \frac{1000}{1 \cdot 10^6} + \frac{100 \cdot 1000}{2 \cdot 10^8} = 0.001 + 0.0005 = 0.0015 s = 1,5 ms$$

Propagation speed: s = 2 * 10⁸ m/s

Processing delay at each router = 1 ms

• Queuing delay at each router = 2 ms

For node 2:

$$d_{nodal,2} = d_{proc,2} + d_{queue,2} + d_{trans,2} + d_{prop,2} = 0.001 + 0.002 + \frac{L}{R_2} + \frac{d_2}{s}$$
$$= 0.003 + \frac{1000}{500 \cdot 1000} + \frac{200 \cdot 1000}{2 \cdot 10^8} = 0.003 + 0.002 + 0.001 = 0.006 s = 6 ms$$

- Propagation speed: s = 2 * 10⁸ m/s
- Processing delay at each router = 1 ms
- Queuing delay at each router = 2 ms

For node 3:

$$d_{nodal,3} = d_{proc,3} + d_{queue,3} + d_{trans,3} + d_{prop,3} = 0.001 + 0.002 + \frac{L}{R_3} + \frac{d_3}{s}$$
$$= 0.003 + \frac{1000}{2 \cdot 10^6} + \frac{50 \cdot 1000}{2 \cdot 10^8} = 0.003 + 0.0005 + 0.00025 = 0.00375 s = 3.75 ms$$

Finally, the end-to-end-delay is:

Propagation speed:
$$s = 2 * 10^8 \text{ m/s}$$

- Processing delay at each router = 1 ms
- Queuing delay at each router = 2 ms

$$d_{end-to-end} = d_{nodal,1} + d_{nodal,2} + d_{nodal,3} = 1,5 + 6 + 3,75 = 11,25 ms$$

Throughput

- throughput: rate (bits/time unit) at which bits are being sent from sender to receiver
 - example: transfer a large file from host A to B
 - throughput is the speed in bits/sec that B receives the file

Throughput

Consider that the data flow only from A to B

- The host A cannot transmit data with rate greater than R_A
- The router cannot transmit data with rate greater than R_B
- If $R_A < R_B$
 - then the bits that sends the host A via router, reach the host B with speed R_A
 - so the end to end throughput is R_A
- If $R_A > R_B$
 - then the router will not be able to forward data as fast as it receives it and
 - so the end to end throughput is R_B

Throughput

- Throughput is the is the transmission rate of the bottleneck link
- Bottleneck link: link on end-end path that is the slowest and thus constrains the end-end throughput

Throughput =
$$min\{R_A, R_B\}$$

Throughput vs Bandwidth

Throughput

- Server may deliver file at 1 Mbps, even if link capacity is higher
- Causes:
 - Handling other traffic
 - Old or slow hardware
- Throughput depends on actual network usage and sharing, not just link capacity

Bandwidth

- Bandwidth of link $A = R_A = 2$ Mbps
- Bandwidth of link B = R_B = 5 Mbps
- the actual link capacity: can transmit up to R bit/ps, the limit of the physical link

Throughput Example

- file size = 4 Gbits
- $R_A = 30 \text{ Mbps}$
- $R_B = 10 \text{ Mbps}$
- time to transfer file from A to B?

time = file size / throughput

= 4 Gbits /
$$min\{R_{A_i}R_B\}$$

$$= 4 * 10^9 / 10 * 10^6$$

$$= 4 * 10^2 = 400 sec \sim = 6,66 min$$

Questions???

